RESEARCH MEMORANDUM MEASUREMENT OF DISTORTION IN SECOND EXPERIMENTAL CONTROL ROD WITH TEMPERATURE PATTERNS SIMULATING SHIM ROD OUT AND SHIM ROD 50 PERCENT INSERTED FOR ARGONNE FOR REFERENCE NAVAL REACTOR By A. F. Lietzke and T. F. Nagey Lewis Flight Propulsion Laboratory Cleveland, Ohio LIBRARY COPY JAN 21 196U LANGLEY FIELD, VIRGINIA # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON September 26, 1951 Declassified December 10, 1959 NACA RM E51E25 #### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS ### RESEARCH MEMORANDUM MEASUREMENT OF DISTORTION IN SECOND EXPERIMENTAL CONTROL ROD WITH TEMPERATURE PATTERNS SIMULATING SHIM ROD OUT AND SHIM ROD 50 PERCENT INSERTED FOR ARGONNE #### NAVAL REACTOR By A. F. Lietzke and T. F. Nagey #### SUMMARY Thermal distortion tests were made on a stainless-steel clad, cadmium-silver control rod furnished by the Argonne National Laboratory. Two temperature patterns supplied by the Argonne National Laboratory were simulated in these tests; one represented the shim-rod-out condition and the other the shim-rod-50-percent-inserted condition. The greatest reduction in clearance affected by thermal distortion was 0.076 inch. No permanent set of the control rod was observed after repeated heating and cooling cycles. #### INTRODUCTION Thermal distortion tests were made at the NACA Lewis laboratory on a stainless-steel clad, cadmium-silver core xenon control rod furnished by the Argonne National Laboratory. Distortion measurements on the first experimental control rod with temperatures intended to simulate 50-percent shim-rod insertion are presented in reference 1. Thermal-distortion measurements on a later model xenon rod with temperature patterns simulating operation with shim rods 50 percent inserted and with shim rods out are presented herein. The temperature patterns used as a basis for the tests were obtained from the Argonne laboratory. #### EQUIPMENT Control rod. - The control rod core was made of an alloy of 75-percent silver and 25 percent cadmium and was clad with stainless steel. A cross section of the rod was in the shape of a cross having a span of 4 inches. The core alloy thickness was 1/8 inch with a cladding thickness 2207 66-1 202 of 3/64 inch, resulting in a total arm thickness of 7/32 inch. The rod had an over-all length of 53.75 inches. The cladding joints for the tips of the arms and ends of the rod were welded. After fabricating, the rod was hot-rolled in order to form a bond between the core alloy and the stainless steel. The rod was stress relieved. Several weld failures were found on the rod as received from the Argonne laboratory. Figure 1 shows the most severe failure found. The failures occurred at the welded juncture of the cladding at the tip of the cross at several locations along the length of the rod. Method of supporting control rod. - The rod was supported essentially as in reference 1. The vise which holds the control rod, however, was bolted indirectly to the mounting plate through insulating material to reduce the heat flow to the mounting plate. Strain gages were located near the fixed end of the rod to insure freedom from stress during the clamping of the rod in the mounting vise. Method of obtaining temperature distribution. - The control rod was heated by a 75 KVA induction heater. Axial temperature distributions were obtained by varying the axial spacing of the heater coil turns. Transverse temperature gradients were obtained by making the heating coil and the rod nonconcentric and by a series of air jets mounted along the rod and directed toward the center of the cross. The air jets were provided by 0.0135-inch diameter holes located 3/8 inch apart, and were controllable in groups of 14 by a valve. Temperature patterns were measured by means of 104 thermocouples distributed between 8 stations located along the axis of the rod as indicated in tables I(a) and II(a) and (b). In addition, thermocouples were located at stations $20\frac{1}{2}$, 21, $21\frac{1}{2}$, $22\frac{1}{2}$, 23, and $23\frac{1}{2}$ inches from the free end of the rod (these positions are adjacent to specific coils of the induction heater) to note any local hot spots due to the proximity of the induction coils. No hot spots at these locations were indicated and the temperatures at these special locations are not reported. Tables I(a) and II(a) and (b) list the required temperatures at each station as requested by the Argonne laboratory and the measured temperatures in the several runs. Method of measuring distortion. - Distortion on the rod was measured as in reference 1 by means of dial indicators. Normally two indicators were located at each tip of the cross in positions along the length of rod as given in tables I(b) and II(c) and (d). The indicators were mounted on four vertical supports fastened to the same mounting plate as the control rod (see fig. 2). These supports were protected from conduction and radiation to eliminate thermal distortion in the supports themselves. Dial indicators were also supplied to indicate any motion of these supports. Fused quartz rods, 12 inches in length, were used to transmit the motion of the control rod to the dial indicators. The use of fused quartz eliminated the need for a correction for thermal expansion of the indicator rods. The reproducibility of the indicator readings was within ± 0.002 inch. A vibrator was attached to the mounting plate and was operated before each set of readings was taken to reduce the effect of static friction of the gages. #### RESULTS AND DISCUSSION Summary of data. - The desired temperature patterns for the tests reported herein were obtained from the Argonne laboratory. Distortion measurements were made with two different temperature patterns; one pattern was intended to simulate operation with the shim rods inserted 50 percent, and one pattern was with the shim rods out. The location of the thermocouples and the corresponding surface temperatures are listed in tables I and II, along with the corresponding distortion measurements. For each thermocouple location, the temperatures desired by the Argonne laboratory and the temperatures experimentally obtained in the present tests are listed. The distance of the thermocouple station from the free end of the rod is represented by Z. The thermocouple locations at each value of Z are designated by numbers from 1 to 16. As indicated in the tables, 16 thermocouples were not installed at each value of Z listed. The displacement of the tips of the cross are indicated in tables I and II by the values of Δx and Δy with their proper signs. These values are given with reference to the unheated position of the control rod. The distortion measurements are those corresponding to the temperatures obtained in the tests, which differed slightly from the temperatures desired by the Argonne laboratory. Distortion of control rod. - The motion of tips 1 and 9 in the y-direction and of tips 5 and 13 in the x-direction are plotted in figures 3 and 4. It would be expected that the sign of the y displacement would always be the same (negative in this case) at the free end, inasmuch as the desired temperatures at location 1 are equal to or higher than those at location 9 in both desired temperature patterns. Figure 3, however, shows Δy to be positive at the free end. Examination of the temperature patterns obtained in table I(a) indicates that near the fixed end of the control rod the temperatures obtained at location 1 were lower than those at location 9 which accounts for the change in direction of displacement. Figure 4 shows Δy to be negative at the free end and inspection of the data in table II(a) indicate that the test temperatures and the desired temperatures agree more closely than in table I. Figure 4(c) and (d) represent the distortion for a slightly different temperature pattern than those in figures 4(a) and (b), the difference being that the fixed end temperatures more nearly matched the required values. The distortions as measured in either case are, however, nearly the same. The maximum reduction in clearance cannot be determined from figures 3 and 4 alone, inasmuch as the motion of each point in one direction only is shown and hence reference must be made to the tables. It can be seen from the distortion data given in tables I and II that the values for reduction in clearance given in figures 3 and 4, are within 0.002 inch from the maximum. The greatest reduction in clearance obtained in the tests was 0.076 inch as indicated by the data in the tables. # SUMMARY OF RESULTS The results of tests on a stainless-steel clad, silver-cadmium control rod under the influence of two temperature patterns which simulated the shim-rod-out condition and the shim-rod-50-percent-inserted condition can be summarized as follows: - 1. The greatest reduction in clearance obtained in the tests was 0.076 inch. - 2. No permanent set of the control rod was observed after repeated heating and cooling cycles. Lewis Flight Propulsion Laboratory, National Advisory Committee for Aeronautics, Cleveland, Ohio, #### REFERENCES 1. Nagey, T. F., and Lietzke, A. F.: Measurement of Distortion in First Experimental Control Rod for Argonne Naval Reactor. NACA RM E51A30, 1951. 2207 TABLE I - SIMULATED SHIM RODS INSERTED 50 PERCENT. # (a) Temperatures. | | | | | Fixed
end | | 7777 | _ | | | | | 9 | | | | | CA | |------------|---------------|---------------------|----------------------|-------------------|----------------------|----------------------|---|----------------------|-------------------|-------------------|---------------------------|-------------------|-------------------|-------------------|-----------------------|----------------------|----------------------| | Z
(in.) | Run | <u> </u> | , · | | | | | Therm | ocoupl | e loc | ation | | | _ | | | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | . 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | | 1 | (a)
1
2 | 476
479
476 | 484
481 | 481
481
481 | 463
484
479 | 471
480
476 | 463
480
476 | 1484
1482
1482 | 459
483
480 | 467
479
477 | 459
481
479 | 455
482
479 | 463
482
479 | 471
476
474 | 463
458
434 | 455
485
482 | 466
484
481 | | 8 | (a)
1
2 | 525
529
530 | 500 | 476 | P35 | 513
513
515 | 492
509
509 | 476
479
481 | 767
767
787 | 502
504
504 | 14817 | 476 | 492 | 213
214
213 | 492
511
512 | 476
482
482 | 500
521
521 | | 15 | (a)
1
2 | 509
1490
1487 | 490
487
487 | 471
470
470 | 762
765
7687 | 500
497
495 | 484
495
495 | 471
478
478 | 478
495
495 | 200
201
735 | <u>ተ</u> 7ዓ
491
492 | 471 | 484
478
479 | 500
479
480 | 484
479
480 | 471
461
459 | և90
487
487 | | 22 | (a)
1
2 | 458
452
450 | 455 | 452 | 454 | 1456
1419
1417 | 15
15
15
15
15
15
15
15
15
15
15
15
15
1 | 452
456
447 | 727
727
723 | 455
451
451 | 453 | 452 | 7+27+ | 456
441
438 | 1473
1473
14214 | 1452
1413
1413 | 1455
144
1455 | | 29 | (a)
1
2 | 455
441
436 | 1443
1449
1453 | 451
452
451 | 1451
1451
1452 | 77-0
77-0
727- | 14.9
14.9
1452 | 451
453
452 | फूर्फ
फूर्फ | 153
151
153 | 452
453
452 | 451
455
453 | 452
447
446 | 454
444
436 | 452
445
443 | 451
448
437 | 453
441
436 | | 36 | (a)
1
2 | 723
723
723 | 451 | 450 | 451 | 452
458
452 | 451
461
457 | 450
468
465 | 450
476
471 | 451
473
467 | 450 | 450 | 451 | 452
459
452 | 7190
7197
712.J | 450
467
462 | 451
461
459 | | J#3 | (a)
1
2 | 148
1461
1456 | 448
470
465 | կկՑ
476
471 | կկ8
473
468 | Ы48
467
462 | 448
469
465 | 448
476
473 | 448
491
475 | կկ8
կ78
կ71 | կկ8
կ82
կ78 | 448
482
478 | 448
471
465 | ЦЦ8
Ц65
Ц60 | ԱԱ8
467
462 | 448
476
470 | 7463
7466
7478 | | 50 | (a)
1
2 | 448
439
425 | 11118 | դդջ | 148 | 448
436
430 | 1770
727
1778 | եկ8
482
473 | 490
490
448 | ևև8
479
465 | Ji-798 | PF8 | 1:148 | 778
778
778 | 448
465
456 | 148
482
474 | 72.
765
778 | ^aRequested by Argonne National Laboratory. TABLE I - SIMULATED SHIM RODS INSERTED 50 PERCENT. Concluded. | Z
(in) | Run | Displace-
ment
(in) | 1 | 5 | 9 | 13 | |-----------|--------|-------------------------------------|-------------------------------|------------------------------|----------------------------|-------------------------------| | 2 | 1
2 | ΔΣ
ΦΣ
ΦΣ | 0.006
.067
.004
.065 | 0.005
.053
.007 | .047 | -0.027
.060
027
.058 | | 10 | 1
2 | Δx
Δy
Δx
Δy | 001
.056
002 | .013
.058
.016
.047 | .011
.035
.010 | 011
.049
008
.048 | | 20 | 1 2 | Δx
Δy
Δx
Δx | 003
.036
003 | .011
.005
.011
.005 | 005
.028
003
.022 | 002
.031
001
.031 | | 35 | 1 2 | Δ¥
Δ¥
Δ× | 001
.015
001
.013 | .010 | .003 | 006 | | 52 | 1 | Δx
Δy
Δx
Δy | .010 | - | 009
-
008 | 005 | TABLE II - SIMULATED SRIM RODS OUT (a) Temperatures; runs 1 and 2. | | | | | erd | | | | | | | | | _ :: | | | منتيته | <u> </u> | |-------|---------------|----------------------|----------------------|----------------------------|-------------------|----------------------|----------------------|----------------------|---------------------|----------------------|----------------------|----------------------|----------------------|--|-----------------------|----------------------|----------------------| | Z | Run | | | | | | | Therm | couple | location | 079 | | | | | | | | (in.) | | 1 | 2 | 3 | 14 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | | 1 | (a)
1
2 | 460
459
460 | 455
461
463 | 1461
1461
1449 | 453
461
464 | 458
458
459 | 453
458
459 | 459
459 | 451
454
457 | 151
151
155 | 72.7
7月.8
72.7 | 721
720
773 | 453
449
450 | 458
437
438 | 453
1117
1426 | 449
456
457 | 1455
1460
1460 | | 8 | (a)
1
2 | 476
480
481 | 466 | 455 | 1462 | 470
475
475 | 462
476
475 | 455
456
455 | 165
165 | 466
467
467 | 459 | 455 | 1:62 | 470
464
462 | 462
471
470 | 455
459
468 | 166
160
181 | | 15 | (a)
1
2 | 490
493
495 | 476
493
495 | 461
460
465 | 470
479
480 | 182
185
186 | 470
485
487 | 461
446
449 | 466
474
477 | 476
483
486 | 466
478
482 | 461
487 | 470
482
484 | 1483
1483
1485 | 470
482
486 | 799
795
795 | 476
488
489 | | 22 | (a)
1
2 | 490
500
503 | 476 | 161 | 471 | 482
487
490 | 471
487
490 | 1461
1419
1451 | 467
470
473 | 476
473
475 | 467 | 1461 | 1,71 | 780
780
785 | 1471
1480
1483 | 461
469
473 | 476
435
445 | | 29 | (a)
1
2 | 481
483
485 | 471
485
485 | 459
477
479 | 466
477
479 | 475
473
476 | 466
473
475 | 459
465
457 | 463
474
475 | 471
474
475 | 463
474
475 | 459
469
470 | 466
479
480 | 475
479
480 | 466
480
481 | 459
477
480 | 471
484
485 | | 36 | (a)
1
2 | 467
464
465 | 461 | 454 | 459 | 1462
1463 | 459
464
463 | 1454
1454 | 457
459
469 | 461
469
469 | 457 | 454 | 459 | 1199
1199
1191 | 458
466
465 | 799
799
727 | 762
767
793 | | 143 | (a)
1
2 | 种2
种3
种8 | 7779
7777
7778 | 1711.2
1711.2
1711.8 | 种8
种2
种8 | 1418
1418
1417 | եկ։
ԱԿ5
ԱԿ7 | 148
145
148 | 1412
1472
148 | 746
744
738 | 1479
144
148 | 1478
1479
1479 | 7179
7173
7748 | 科科
科
科
科
科
科
科
科
科
科
科
科
科 | 한
한
한
한
8 | かけQ
かけ2
さが8 | 5年
2年
348 | | 50 | (a)
1
2 | 1773
1773
1779 | 14148 | 1418 | 148 | 448
441
453 | 1419
1419
1419 | 148
456
469 | 726
776
778 | 1436
1436
1445 | 11148 | lili\$ | 778 | 148
1436
1415 | 448
447
458 | 1,48
1,62
1,72 | իկ8
465
478 | ⁸Requested by Argonne Mational Laboratory. TABLE II - SIMILATED SHIN RODS CUT. Continued (b) Temperatures; run 3. | Z | Run | | | | | | | Thermo | couple | location | n | <u> </u> | - | . : . | | | | |-------|----------|--------------|------------|----------------------|--------------|--------------|--------------|--------------|----------------|--------------|--------------|------------|-------------|-------------------|--------------|--------------|--------------| | (in.) | | 1 | 2 | 3 | L L | 5 | 6 | 7 | B | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | | ı | (a)
3 | 1460
1449 | 455
452 | 1449
1450 | 1453
1449 | 1458
1449 | 453
451 | 1449
1452 | 1451
1419 | 1722
1722 | կ51
կկ2 | 以()
445 | 453
high | 458
432 | 453
453 | իկ6
իկ6 | 455
453 | | 8 | (a)
3 | 476
475 | 466 | 455 | 462 | 1470
1465 | 462
466 | 455
447 | 459
456 | 466
457 | 150 | 455 | L62 | 472 | 462
458 | 455
465 | 1.66
1.75 | | 15 | (a)
3 | ዚ90
կ87 | 476
487 | 461
460 | 470
472 | 482
478 | 479
478 | 461
441 | 466
467 | կ76
և7կ | 465
472 | 461 | 472
472 | 1,82
1,72 | 1170
1171 | 461
461 | 476
473 | | 22 | (a)
3 | 490
491 | 476 | 461 | 471 | 482
490 | 1471
1492 | 461
450 | 467
474 | 476
478 | L67 | 451 | 471 | 482
480 | 471
480 | 461
472 | 476
444 | | 29 | (a)
3 | 481
489 | 471
490 | 459
482 | 466
481 | 475
479 | 466
479 | 459
469 | 463
479 | 171
179 | 463
475 | 459
475 | 466
495 | 475
485 | և66
և46 | 459
485 | 171
190 | | 36 | (a)
3 | 467
462 | 461 | 1454 | 459 | 1461
1461 | 459
462 | 454
465 | 457
467 | 461
470 | 457 | 454 | 459 | 1.61.
1.67 | 458
465 | 45h
465 | 461
461 | | 43 | (a)
3 | 1443
1443 | 种0
种8 | 1413
1414
1414 | 7477
7478 | 1115
1118 | 7175
7178 | կկ8
կկ1 | 8بليا
2بليا | 7775
7778 | 1448
1448 | րիր
Իրջ | կեր
կկ1 | 7770
7772 | 448
437 | 141
141 | Pris
Pris | | 50 | (a)
3 | 1448
1450 | 抽名 | կկ8 | 8,44 | 448
456 | 1449
1449 | նկ։
կ.69 | ЦЦ.
1458 | 1418
1417 | հնե | 神化 | PPR | 7778
7774 | 44#
459 | 141A
1475 | PP0 | ^aRequested by Argonne National Laboratory. | | | | Gage location | | | | | | | | |------------|--------|------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--|--|--|--| | Z
(in.) | Run | Displace-
ment
(in.) | 1 | 5 | 9 | 13 | | | | | | 2 | 1
2 | Δж
Δу
Δ х
Δу | 0.006
039
.005
040 | 0.000
052
.002
053 | 0.006
057
.006
058 | -0.017
046
016
047 | | | | | | 10 | 1 2 | Дж
Ду
Дж
Ду | .007
029
.006
030 | .005
033
.006
035 | .013
043
.012
045 | 008
029
007
030 | | | | | | 20 | 1 2 | Δх
Δу
Δх
Δу | .000
008
001
009 | .005
021
.006
022 | .006
027
.006
029 | 008
032
008
033 | | | | | | 35 | 2 | Δx
Δy
Δx
Δy | .002
003
.001
004 | .009
001
.010
012 | .005 | 007

007 | | | | | | 52 | 1
2 | Δx ,
Δy
Δx
Δy | .002 | .007 | 007
007 | 004 | | | | | TABLE II - SIMULATED SHIM RODS OUT. Concluded | | | | Gage location | | | | | | | | |-------|-----|----------------------------|---------------------|--------------|--------------|---------------|--|--|--|--| | (in.) | Run | Displace-
ment
(in.) | 1 | 5 | 9 | 13 . | | | | | | 2 | 3 | ∆ x
∆ y | 0.002
029 | 0.005
048 | 0.004
054 | -0.0I4
043 | | | | | | 10 | 3 | Δ y
Δ y | .00 <u>4</u>
027 | .007
031 | .011
041 | 005
027 | | | | | | 20 | 3 | ∆ ж
∆у | 002
008 | .007 | .013
027 | 006
031 | | | | | | 35 | 3 | Δ х
Δ у | .001
004 | .013
010 | .012 | 006 | | | | | | 52 | 3 | Δ x
Δy | .004 | •006 | 007 | 003 | | | | | Figure 1. - Photograph of most serious weld failure. NACA RM E51E25 Figure 2. - Photograph of setup. (a) Variation of $\triangle x$ with Z. Figure 3. - Distortion of control rod with temperature pattern intended to simulate shim rods inserted 50 percent; normal temperatures. (a) Variation of Δx with Z; runs 1 and 2. (b) Variation of Δy with Z; runs 1 and 2. Figure 4. - Distortion of control rod with temperature pattern intended to simulate shim rods out, normal temperatures. (c) Variation of $\triangle x$ with Z; run 3. (d) Variation of $\triangle y$ with Z; run 3. Figure 4. - Concluded. Distortion of control rod with temperature pattern intended to simulate shim rods out; normal temperatures. 3 1176 01435 2406 E.ess ¥